High Performance Connectivity – Technology Shootout

Cable types

Noise immunity

Only Valens chipsets can support Bmeter cable lengths for the full lifecycle of the vehicle.

Link Distance

Competitor 2

EMC Study on Aged Shielded Cables

Published: IEEE

Henrik Wiebe, Huber Automotive ; Dr. Matthias Spägele, Huber Automotive

Stage	Tested cable groups	Description
Α	#1, #2, #3, #4 & #5	10000 cycles at a temperature of +40°C
В	#2, #3, #4 & #5	20000 cycles at a temperature of +40°C
С	#3, #4 & #5	10000 cycles at a temperature of -20°C
D	#4 & #5	10000 cycles at a temperature of +85°C
E	#5	2500 cycles at a temperature of +40°C

Research shows that the effectiveness of shielding degrades as cables age, leaving safety-critical links vulnerable to Electromagnetic Interference

A DSP-Based Approach to EMI

Dynamic Coax Shielding Attenuation (SA) Degradation: Even after the first stage of testing, shielding Attenuation degrades significantly and quickly

Dynamic Coax Insertion Loss (IL) Degradation: Aging leads to major Insertion Loss degradation and distortions

 \bigcirc

	A-PHY G1	A-PHY G2	A-PHY G3	Current Gen	Next Gen	Current Ger
oax	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ΓP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TP	\checkmark	\checkmark	✓	×	×	X

Only Valens can support Unshielded Twisted Pair cables, which are more flexible than their counterparts and can lower total system cost.

Cable Types

Competitor 1

Competitor 2

Next Gen

 \checkmark

 \checkmark

Transmitter

Valens can withstand all common automotive noise profiles, when others can't.

Noise Immunity

A-PHY 4Gbps	A-PHY 8Gbps	Competitor 1 6Gbps	Competitor 2 8Gbps	
100mV	89mV	14mV	16mV	
100mV	79mV	2mV	No Link	
100mV	79mV	10mV	11mV	
100mV	79mV	7mV	11mV	
89mV	89mV	No Link	3mV	

EMC Testing of Valens VA7000 Chipsets

Coax Ca	abling, 8Gbps -	Test
		RE-Test
		CP-Test
DENSO JasPa		RI-Test
		BCI-Test
		TOL-Tes
Using 15m		ESDI-Tes
Cables:		RE-Test
		CP-Test
		RI-Test
		BCI-Test

Table 1.1: Overview EMC-Tests							
Test	Operating Mode	Setup	Result	Comment			
RE-Test	Gear 3 with BIST	Setup C	Pass	according to RE-Test Class 5			
CP-Test	Gear 3 with BIST	Setup C	Pass	according to CP-Test Class 4			
RI-Test	Gear 3 with BIST	Setup C	Pass	according to RI-Test Criteria A			
BCI-Test	Gear 3 with BIST	Setup C	Pass	according to BCI-Test Criteria A			
TOL-Test	Gear 3 with BIST	Setup C	Pass	according to TOL-Test Criteria A			
ESDI-Test	Gear 3 with BIST	Setup C	Pass	according to ESDI-Test Criteria A			
RE-Test	Gear 3 with BIST	Setup D	Pass	according to RE-Test Class 5			
CP-Test	Gear 3 with BIST	Setup D	Pass	according to CP-Test Class 4			
RI-Test	Gear 3 with BIST	Setup D	Pass	according to RI-Test Criteria A			
BCI-Test	Gear 3 with BIST	Setup D	Pass	according to BCI-Test Criteria A			
TOL-Test	Gear 3 with BIST	Setup D	Pass	according to TOL-Test Criteria A			
ESDI-Test	Gear 3 with BIST	Setup D	Pass	according to ESDI-Test Criteria A			

Valens' A-PHY-compliant VA7000 chipsets passed all listed EMC tests with margin

UTP Cabling, 4Gbps

Table 1.1: Overview EMC-Tests								
Test	Operating Mode	\mathbf{Setup}	Result	Comment				
RE-Test	Gear 2U with BIST	Setup A	Pass	according to RE-Test Class 5				
CP-Test	Gear 2U with BIST	Setup A	Pass	according to CP-Test Class 4				
RI-Test	Gear 2U with BIST	Setup A	Pass	according to RI-Test Criteria A				
BCI-Test	Gear 2U with BIST	Setup A	Pass	according to BCI-Test Criteria A				
TOL-Test	Gear 2U with BIST	Setup A	Pass	according to TOL-Test Criteria A				
ESDI-Test	Gear 2U with BIST	Setup A	Pass	according to ESDI-Test Criteria A				
RE-Test	Gear 2U with BIST	Setup B	Pass	according to RE-Test Class 5				
CP-Test	Gear 2U with BIST	Setup B	Pass	according to CP-Test Class 4				
RI-Test	Gear 2U with BIST	Setup B	Pass	according to RI-Test Criteria A				
BCI-Test	Gear 2U with BIST	Setup B	Pass	according to BCI-Test Criteria A				
TOL-Test	Gear 2U with BIST	Setup B	Pass	according to TOL-Test Criteria A				
ESDI-Test	Gear 2U with BIST	Setup B	Pass	according to ESDI-Test Criteria A				

	Valens			Competitor 1			Competitor 2		
	A-PHY G1	A-PHY G2	A-PHY G3	Current Gen	Next Gen		Current Gen	Next Gen	
Line Rate (Gbps)	2	4	8	6	12		4.16	10	
Data Rate (Gbps)	1.8	3.6	7.2	5.15	TBD		3.32	7.55	
Frequency (GHz)	0.5	1	2	3	3		2.08	5	

Valens chipsets offer the best combination of downstream bandwidth and low frequency (never rising above 2GHz) for reduced radiated emissions.

Downlink-Frequency Ratio

G4: 12Gbps, G5: 16Gbps With no impact on noise immunity

MIPI A-PHY has a clear roadmap to 16Gbps with no impact on the integrity of the channel; proprietary solutions have reached the limits of analog technologies and cannot scale to support higher bandwidth.

Scalability

Competitor 1

Competitor 2

Legacy analog - Cannot reach noise immunity for the required cable length

Legacy analog - Cannot reach noise immunity for the required cable length

Valens' A-PHY Chipsets: A DSP-Based Approach to EMI

Pulse Amplitude Modulation

- Higher levels of PAM encode more bits per symbol, leading to:
 - Stream sensitive transmissions operating at different PAM levels (PAM2 for Header, PAM4 for Controls, PAM4/8/16 for payload)
 - Lower frequency on the cable
 - Lower insertion loss
 - Lower noise due to lower receiver bandwidth

Higher levels of PAM lower the required link frequency; while competing solutions use PAM2/4, MIPI A-PHY solutions reach PAM16

A DSP-Based Approach to EMI

Fully Adaptive Equalization

- Fully adaptive equalization tracks channel variations in real time, while competing solutions only select from pre-defined parametric/discrete filters
- Equalizes timing variations of the channel
- Compensates reflections from concatenated multi-inline cable structures

Compensates for channel insertion loss throughout the length of the cable.

Noise Canceling for EMI attacks

- Just-in-time noise canceller: Synchronized mechanisms that speed up canceller convergence
- Optimized for EMI attacks (NBI), including non-linear harmonic distortions

The Valens solution is fully adaptive and optimized for Narrowband Interference (NBI), while competing solutions rely mainly on shielding and application-level retransmission to deal with this noise profile

Dynamic Error Correction (RTS) – Optimized for NBI

- Ultra-fast: occurs at the physical level (PHY)
- Dynamic modulation ensures retransmitted packets arrive uncorrupted

	FEC Forward error corrections	DMLR Dynamically Modulated Local Retransmission
Bounded latency	\checkmark	\checkmark
White noise correction	\checkmark	\checkmark
EMI noise correction	×	\checkmark

DMLR is specifically designed to handle electromagnetic noises present in the vehicle, while FEC is extremely limited in its ability to deal with such noises

Transparent to upper layers, bounded to ~10us latency

Surround View System

Surround View System

Reduced Total System Cost Sensor

Direct integration of MIPI A-PHY
into the image sensor results in
\$0.90 savings per sensor (\$3.60 in a
4-camera surround view system).

Surround View System

Surround View System

Reduced Total System Cost Wire Harness

 Use of UTP cables and MQS connectors/inlines instead
of Coaxial cable and Fakra connectors/inlines.

Surround View System

Surround view system		Conventional GMSL based MIPI A-PHY based		Conventional TI based	MIPI A-PHY based	
		2021 28k	2021 28k	2021 28k	2021 28k	
		USD / Unit	USD / Unit	USD / Unit	USD / Unit	
	1001	Mechanical Parts	33,70	32,71	33,70	32,71
	1002	Optics module Assy	19,31	19,31	19,31	19,31
	1003	Electronics	44,52	45,78	61,37	54,02
Matorial	1004	Wireharness	23,49	9,77	23,49	9,77
Material	Total BOM		121,03 \$	107,57 \$	137,87 \$	T15,81 \$
	MGK	3,50%	4,24	3,76	4,83	4,05
	Scrap	0,50%	0,61	0,54	0,69	0,58
	Total Material		125,87 \$	TT,87 \$	143,39 \$	120,45 \$
	1001	PCB 1	1,40	1,40	1,40	1,40
Assembly	1002	Final Assy	3,05	2,98	3,05	2,98
	Total Production		4,46 \$	4,38 \$	4,46 \$	4,38 \$
Totals	Manufacturing Cost		130,33 \$	116,25\$	147,85\$	124,83\$
	Overhead	12%	15,64	13,95	17,74	14,98
	Profit	6%	7,82	6,98	8,87	7,49
	Total Cost		153,78 \$	137,18 \$	174,46 \$	147,30 \$

Reduced Total System Cost

Cost Breakdown: 13 MP

Cost Breakdown: 4 MP